Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(19): 2995-3010.e9, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37490917

RESUMO

The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Infarto/metabolismo , AVC Isquêmico/metabolismo , Metabolismo dos Lipídeos
2.
PLoS Biol ; 19(5): e3000939, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014921

RESUMO

Inflammation is implicated in the onset and progression of various diseases, including cerebral pathologies. Here, we report that DJ-1, which plays a role within cells as an antioxidant protein, functions as a damage-associated molecular pattern (DAMP) and triggers inflammation if released from dead cells into the extracellular space. We first found that recombinant DJ-1 protein induces the production of various inflammatory cytokines in bone marrow-derived macrophages (BMMs) and dendritic cells (BMDCs). We further identified a unique peptide sequence in the αG and αH helices of DJ-1 that activates Toll-like receptor 2 (TLR2) and TLR4. In the ischemic brain, DJ-1 is released into the extracellular space from necrotic neurons within 24 h after stroke onset and makes direct contact with TLR2 and TLR4 in infiltrating myeloid cells. Although DJ-1 deficiency in a murine model of middle cerebral artery occlusion did not attenuate neuronal injury, the inflammatory cytokine expression in infiltrating immune cells was significantly decreased. Next, we found that the administration of an antibody to neutralize extracellular DJ-1 suppressed cerebral post-ischemic inflammation and attenuated ischemic neuronal damage. Our results demonstrate a previously unknown function of DJ-1 as a DAMP and suggest that extracellular DJ-1 could be a therapeutic target to prevent inflammation in tissue injuries and neurodegenerative diseases.


Assuntos
Isquemia Encefálica/metabolismo , Proteína Desglicase DJ-1/metabolismo , Alarminas/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/fisiopatologia , Citocinas/imunologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteína Desglicase DJ-1/fisiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Semin Immunopathol ; 40(6): 523-538, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206661

RESUMO

Inflammatory responses play a multifaceted role in regulating both disability and recovery after ischemic brain injury. In the acute phase of ischemic stroke, resident microglia elicit rapid inflammatory responses by the ischemic milieu. After disruption of the blood-brain barrier, peripheral-derived neutrophils and mononuclear phagocytes infiltrate into the ischemic brain. These infiltrating myeloid cells are activated by the endogenous alarming molecules released from dying brain cells. Inflammation after ischemic stroke thus typically consists of sterile inflammation triggered by innate immunity, which exacerbates the pathologies of ischemic stroke and worsens neurological prognosis. Infiltrating immune cells sustain the post-ischemic inflammation for several days; after this period, however, these cells take on a repairing function, phagocytosing inflammatory mediators and cellular debris. This time-specific polarization of immune cells in the ischemic brain is a potential novel therapeutic target. In this review, we summarize the current understanding of the phase-dependent role of innate myeloid cells in ischemic stroke and discuss the cellular and molecular mechanisms of their inflammatory or repairing polarization from a therapeutic perspective.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Encéfalo/patologia , Humanos , Imunidade Inata/fisiologia , Inflamação/patologia , Células Mieloides/patologia , Fagocitose/fisiologia , Acidente Vascular Cerebral/patologia
4.
Nihon Rinsho ; 74(9): 1474-1478, 2016 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-30557479

RESUMO

Daily rhythms of many physiological and behavioral processes such as sleep and arousal are controlled by the circadian clock. The circadian clock entrains to environmental diurnal changes by using light and food intake as external time cues. Circadian photoentrainment is mediated by retinal ganglion cells expressing a blue-light sensitive photopigment mela- nopsin. Feeding and fasting drive daily rhythms in the expression of circadian clock genes and key regulators of nutrient homeostasis in peripheral tissues. Understanding melanopsin function and timing of feeding-fasting lets us recognize the importance of timing of blue light exposure and feeding based on the concept of the circadian clock, ultimately to adjust the age-related changes in daily rhythm.


Assuntos
Envelhecimento , Relógios Circadianos , Ritmo Circadiano , Sono , Envelhecimento/fisiologia , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Ingestão de Alimentos , Humanos , Luz
5.
Stem Cell Reports ; 5(3): 365-77, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26212661

RESUMO

Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex. The transcription factors nuclear factor I (NFI) A and B, essential regulators of the initiation of gliogenesis, were found to be targets of miR-153. Inhibition of miR-153 in early neurogenic NSPCs induced precocious gliogenesis, whereas NFIA/B overexpression rescued the anti-gliogenic phenotypes induced by miR-153 OE. Our results indicate that miR-mediated fine control of NFIA/B expression is important in the molecular networks that regulate the acquisition of gliogenic competence by NSPCs in the developing CNS.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Animais , Córtex Cerebral/citologia , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia
6.
Proc Natl Acad Sci U S A ; 111(4): 1604-9, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474786

RESUMO

Neural stem/progenitor cell (NSPC) multipotency is highly regulated so that specific neural networks form during development. NSPCs cannot respond to gliogenic signals without acquiring gliogenic competence and decreasing their neurogenic competence as development proceeds. Coup-tfI and Coup-tfII are triggers of these temporal NSPC competence changes. However, the downstream effectors of Coup-tfs that mediate the neurogenic-to-gliogenic competence transition remain unknown. Here, we identified the microRNA-17/106 (miR-17/106)-p38 axis as a critical regulator of this transition. Overexpression of miR-17 inhibited the acquisition of gliogenic competence and forced stage-progressed NSPCs to regain neurogenic competence without altering the methylation status of a glial gene promoter. We also identified Mapk14 (also known as p38) as a target of miR-17/106 and found that Mapk14 inhibition restored neurogenic competence after the neurogenic phase. These results demonstrate that the miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic NSPC competence transition and that manipulation of this axis permits bidirectional control of NSPC multipotency.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/fisiologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sequência de Bases , Proteína Glial Fibrilar Ácida/genética , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/química , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...